iact_estimator.plots.physics ============================ .. py:module:: iact_estimator.plots.physics .. autoapi-nested-parse:: Plotting functions related to observational performance of the insturment. .. !! processed by numpydoc !! Functions --------- .. autoapisummary:: iact_estimator.plots.physics.plot_spectrum iact_estimator.plots.physics.plot_sed iact_estimator.plots.physics.plot_exposure iact_estimator.plots.physics.plot_rates Module Contents --------------- .. py:function:: plot_spectrum(config, energy_bounds, model, source_name, plotting_options, savefig=True, output_path=None, **kwargs) Plot a spectrum from a model. :Parameters: **energy_bounds** : `~astropy.units.Quantity` Plot energy bounds. **model** : `~gammapy.modeling.models.SpectralModel` Spectral model to plot. **output_path** : `str` or `pathlib.Path` Path to the output directory where to save the plot. **source_name** : `str` Name of the source. **plotting_options** : `dict` Dictionary of options related to plotting from the configuration file. **\*\*kwargs** Keyword arguments for `~matplotlib.pyplot.plot`. .. !! processed by numpydoc !! .. py:function:: plot_sed(config, sigmas, sig_comb, source_name, assumed_spectrum, en, sed, dsed, detected, savefig=True, output_path=None, annotation_options={'rotation': 45, 'xytext': (10, 10), 'size': 15, 'horizontalalignment': 'left', 'verticalalignment': 'bottom'}) Plot the Spectral Energy distribution with significances. :Parameters: **config** : dict Loaded configuration **sigmas** : array-like .. **sig_comb** : float Combined significance **source_name** : str .. **assumed_spectrum** : `~gammapy.modeling.models.SpectralModel` .. **en** .. **sed** .. **dsed** .. **detected** .. **savefig** : bool .. **output_path** : str or `~pathlib.Path` .. **annotation_options** : dict Options for `matplotlib.axes.Axes.annotate`. .. rubric:: Notes Spectral points following the assumed spectrum are shown. Their error bars reflect the performance of the instrument for such a source. Significance for each bin is given. Bins without detection have gray numbers. At the top of the plot a simple number using information from all the shown bins is given to evaluate if the source can be detected, roughly if .. math:: \dfrac{ \sum sigma_{i} } { \sqrt{N} } \gtrsim 5 .. !! processed by numpydoc !! .. py:function:: plot_exposure(data) .. py:function:: plot_rates(performance_data, title=None, ax=None)